Polymeric Materials Group

Dia Aberto à Inovação e Transferência de Tecnologia

April 4th, 2006

Case Study: PVC Industry

Departamento de Engenharia Química Faculdade de Ciências e Tecnologia Universidade de Coimbra

Summary

Introduction FRP Advantages Disadvantages Project History Neovinil LRP Features Industrial Advantages Academic vs Industry Scale-up (Results) Homopolymer Low Tg High Tg Projects under study Conclusions

Introduction

PVC

- Second largest (after polyethylene)
- Globally 25 million tonnes
- Very versatile
- Strength, transparency, low cost
- All from free radical reactions
- Most common is batchwise aqueous suspension process

Free Radical Polymerization

Advantages

•Polymerization degree can be very high at low temperatures

• Does not require stringent purification of the reagent, except the elimination of the dissolved oxygen.

- Leads to high molar mass polymers under relatively mild conditions.
- Molecular weight increases rapidly
- Used in water system
- Enthalpically favorable

Introduction
FRP
Advantages
Disadvantages
Disadvantages
Project History
Neovinil
LRP
Features
Industrial Adv
Academic vs Ind
Scale-up
Homopolymer

Low Tg

High Tg

Projects under study

Conclusions

Easy to perform in industrial environment

(same since the beginning)

Free Radical Polymerization

Project History

Main target:

Development of new polymerization mechanism able to polymerize VC in such way that could avoid **side reactions**

1st time that something is done at molecular level

- Active chain ends
- No structural defects

Solution

Living Polymerization – Definition (1956)

"... Living polymers still able to grow whenever additional monomer is supplied". And

"Ideally, living polymers propagate while their termination or chain transfer are rigorously prevented."

Living Radical Polymerization (1990s)

(3 main methodologies based on the reduction of active radical species)

Single Electron Transfer – Low Tg **Degenerative Chain Transfer** Metal Catalyzed High Tg LRP (SET-DTLRP) Projects under study 2004 Conclusions 1999 April 2002 Percec, V. et al J Polym Sci Part A: Percec, V. et al J Polym Sci Part A: Polym Chem, 2001, 39, 3392-3418. Polym Chem, 2004, 42, 6267-6282. (DEQ/CIRES)

FRP

Advantages

Project History

Features

Industrial Adv

Homopolymer

Academic vs Ind

Neovinil

Scale-up

LRP

Disadvantages

Living Polymerization

LRP Features

Introduction FRP Advantages Internal First-Order Kinetics with Respect to Monomer Disadvantages Linear Growth of Degree of Polymerization **Project History** Neovinil Narrow molar mass distribution I RP Long-Lived Polmer Chains Features Industrial Adv Low occurrence of irreversible bimolecular termination Academic vs Ind Does not require stringent conditions to be performed Scale-up Homopolymer Low Tg High Tg **Controlled structure** Projects under study **Controlled architecture** Conclusions

Controlled molecular weight

Tailor made polymers

Living Polymerization

Academic vs Industrial

Low Mw / High Mw Low Tg / High Tg Elastoromeric / HDT Low Mw / High Mw Low Tg / High Tg Elastoromeric / HDT

Similar or better than the commercial product

Added value to pay the cost difference

Reaction Time Reaction Temperature Reaction Medium Reaction Coumponds Introduction
FRP
Advantages
Disadvantages
Project History
Neovinil
LRP
Features
Industrial Adv
Academic vs Ind

Scale-up Homopolymer Low Tg High Tg Projects under study Conclusions

LRP – Scale up

Scale up – Standard Procedure

Four different scales

FRP Advantages 50 mL Disadvantages 2L and 5L 150L (Glass reactors) **Project History** Neovinil Mechanistics studies I RP Processing Tests Reaction kinetics and Reaction kinetics Processing Features Industrial Adv New ideas Academic vs Ind Scale-up Homopolymer

Homopolymer Low Tg High Tg Projects under study Conclusions

Introduction

Logistics

Processing

??? m³ Commercialization

Resembles the industrial scale

Results

Homopolymerization

The results obtained in small scale were sucessfully scaled up in 150L

AMOSTRA	0 min.	55 min.	60 min.	65 min.	70 min.	90 min.	110 min.	130 min.	150 min.	170 min.	190 min.	210 min.	230 min	250 min	270 min	290 min	310 min	RESULTADO
Rejª ca/zn				2000														>60 <65
PAL-038 AMOSTRA © 2 ^H boix 0							1								1			>230 < 250
PAL-038 Húmida											1				de la	- a		>250 <270
PAL-038 AMOSTRA B				200					-									and and a
PAL-038 5êco a 30°c														1	E.	F		>250 <270
PAL-038 AMOSTRA	30		200			19.10				-	10 C		1.1		0.4	2		>290 < 310

Projecto Neovinil

Introduction FRP Advantages Disadvantages Disadvantages Project History Neovinil LRP Features Industrial Adv Academic vs Ind Scale-up Homopolymer Low Tg

High Tg Projects under study Conclusion

although...

Homopolymerization

Homopolymerization of the co-monomer

PVC PVC

Acrilonitrile 2-Ethyl Hexyl Acrylate Methyl Acrylate Ethyl Acrylate **n-Butyl Acrylate** tert-Butyl Acrylate

....

Polymer Tg Mechanical Properties Price Active Chain Ends

Compatibility with PVC Range of temperatures FRP Advantages Disadvantages Disadvantages Project History Neovinil LRP Features Industrial Adv Academic vs Ind Scale-up Homopolymer Low Tg High Tg

Projects under study

Conclusions

Introduction

Tensile Tests

Dynamic Mechanical Thermal Analysis

Introduction FRP Advantages Disadvantages **Project History** Neovinil LRP Features Industrial Adv Academic vs Ind Scale-up Homopolymer Low Tg High Tg Projects under study Conclusions

Block Copolymers (High Tg)

tipically used for PVC

Block Copolymers (High Tg)

• New strategy (it will allow to increase the Tg until 140°C)

Projects under study

Kinetic determinations (structure of monomer vs rate of polymerization) => DEQ (Carvalho, E. Seminário 2006)

Different initiator systems (structure of initiatior vs rate of polymerization)

New polymeric architectures => DEQ (Marques, D. Seminário 2006)

New products made of PVC with different properties (hydrophilicity)

Increase the mechanical resistance of the PBA

Scale-up of copolymers to the 150L (know how developed for the homopolymerization)

New materials based on multiblocks (ABCBA) kinetic and compatibility advantages)

Economical evaluation of our products

Introduction FRP Advantages Disadvantages Project History Neovinil LRP Features Industrial Adv Academic vs Ind Scale-up Homopolymer Low Tg High Tg **Projects under study** Conclusions

Conclusions

	Introduction
	FRP Advantages
• The SET-DTLRP allows the synthesis of well controlled structures	Disadvantages
• Works with industrial available compounds	Project History Neovinil
 Possible to perform in large scale reactors 	LRP
• Low cost when compared with other LRP systems	Features Industrial Adv
• Open the possibility of using PVC in macromolecular engineering	Academic vs Ind
	Scale-up
	Homopolymer
	Low Tg
only LRP method for VCM polymerization so far	High Tg
	Projects under study
	Conclusions

Conclusions

A cooperação universidade/indústria é possível, desejável, todos os participantes são essenciais dado que possuem valências totalmente distintas e acabam sempre por beneficiar de alguma forma

Conclusions

3 alunos de pós-doc

12 publicações em revistas

3 patentes

Invenção do SET-DTLRP

Ţ

Lidera um projecto inovador na sua área de negócio (autonomia)

Progressão exterior

Possibilidade de estabelecer parcerias estratégicas

Competências na área de investigação fundamental

2 Patentes em perspectiva

Adquiriu competências na área onde Dow: Ciba, IBM Duppet Mais se investiga (LRP) Polymer Laboratories..... Aluno de doutoramento

Equipamento / Optimização

Inúmeras publicações

Pólo de investigação em SET-DTLRP

Acknowledgements : Cires for supporting my phD scholarship

Thank you

Contacts:

jcoelho3@eq.uc.pt, jorge.coelho@cires.pt

hgil@eq.uc.pt

pedro.goncalves@cires.pt

Acknowledgements

Mariana Abreu Mafalda Carreira Luis Alves **Cristina Costa Rogério Marques** Jorge Nogueira **Dionisio Miranda** Silvana Soares Patricia Alves Joana Monteiro

Living Radical Polymerization

Block Copolymer

Random Copolymer

Star (Co)polymer

Hyperbranched (Co)polymer

Gradient Copolymer

Graft Copolymer

Network

