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Outline
o An overview of PSE.

o Numerical methods:

• Nonlinear equations.

• Continuous optimization

• Combining discrete decisions, logical and heuristic information.

o Major application areas of PSE:

• Design.

• Operations.

• Control.

o Software tools.
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1. An overview of Process Systems Engineering
The essence of Chemical Engineering has always been

“the synthesis, design, testing, scaleup, operation, control and
optimization of processes that change the physical state or the

composition of materials” (Westerberg, 1998).

PSE has traditionally been concerned with

“understanding and developing systematic procedures for design,
control and operation of chemical processes” (Sargent, 1991).

PSE can be identified with a major paradigm in Chemical Engineering.
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1.1. Major paradigms in Chemical Engineering:

À unit operations (A.D. Little, 1915).

Á basis on physical sciences and mathematical analysis:

• Aris, Bird et al. (2002), ∼ 60s.

Â systematic decision making methods for design and operation:

• volume in AIChE Symposium Series (1961).

• Rudd and Watson (1968).

• journal Computers and Chemical Engineering, (1977–).

• Douglas (1988)

• Biegler et al. (1997)

• ESCAPE meetings (1992–)

. ESCAPE-14, Lisbon, May 16–19, 2004, see
<http://www.escape14.online.pt>

í PSE area is 35–40 years old.
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1.2. Basic ChemE economic data (US, 2001)

Distribution of revenues

Basic chemicals

Pharmaceuticals

Speciality chemicals

Consumer products

Crop protection

Fertilizers

Total revenues: Chemicals (447 bil.) + Oil (595 bil.) ' 1 000 billion USD.

Typical profit margins (Grossmann, 2004):

Biotechnology: 20–30%
Pharmaceutical: 15–20%

Petroleum: 6 – 10%
Chemicals: 5 – 8%
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The concept of PSE has recently evolved to include improvement of the decision making process
of the entire chemical supply chain — creation and operation:

• Micro-scale:

. Product engineering: synthesize new products (solvents, refrigerants, polymers), shorter
development phases, agile manufacturing.

• Macro-scale:

. Enterprise level: logistics for manufacturing, production planning and distribution.
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í Discover, design, manufacture and distribute chemical
products in the context of many conflicting goals.

Important characteristics of decision making methodologies:

• essential to compete in global markets.

. reduce costs, operate efficiently, environmental safe and sustainable, innovative prod-
ucts, improved quality.

• with both practical and theoretical implications.

. while largely driven by industrial needs, address fundamental theoretical aspects.

• integrate physical sciences, mathematics, operations research (& A.I.), and computer sci-
ence.

. models often without closed form solutions.

. efficient problem representations for alternatives.

. product is often a (complex) computer code.

Representations and models are the natural tools to generate reasonable alternatives. Only
systematic methods for exploring alternatives guarantee solutions that meet constraints and op-
timize an objective.
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1.3. A simple example: Alternative heat transfer networks

Extreme configurations:

Non-integrated Fully integrated

Need to consider both thermodynamic constraints and specific heat needs!

For 1 CS + 1 HS, only one pairing possible.

Optimization and Control of Chemical Processes — CIM Workshop, July 2003 9



With 2 CS + 1 HS, superstructure is (Biegler et al., 1997):

Alternatives embedded in superstructure:
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For more general cases, possible to use a pairing matrix, e.g.:

H1 H2 H3
C1
C2 • •
C3

0 dots — 1 alternative.
1 dot — 9 alternatives.
2 dots — vertical (1 + 2 streams) or diagonal (2 + 2 streams).
3 dots — etc.

+ serial / parallel arrangements ⇒ Thousands of alternatives can be enumerated.

í Representation and solution efficiencies are important because
the selection problems generated are often NP-hard.
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Current PSE applications (Grossmann and Westerberg, 2000)

Design Operations
Energy recovery networks Scheduling
Distillation systems Multiperiod planning and optimization
Reactor networks Data reconciliation
Hierarchical decomposition of flowsheets Real-time optimization
Superstructure optimization Flexibility analysis
Multiproduct & multipurpose batch plants Fault diagnosis

Control Support tools
Model predictive control Sequential-modular simulation
Controllability Equation-based simulation
Robust control A.I. / Expert Systems
Nonlinear control Large-scale NLP
Statistical process control Optimization of DAEs
Process Monitoring Mixed-integer NLP

Global optimization

í Process improvement and diagnosis are often major driving
forces behind process modeling.
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2. Numerical methods for solution and optimization of pro-
cess models

Solution methods provide often inspiration for optimization.

2.1. Nonlinear equations

f (x) = 0
x ∈ Rn, f nonlinear, solution is f (x∗) = 0

Basic algorithm is Newton’s method. Defining

Jk = ∇ f T(xk) ∈ Rn×n

dN,k = xk+1− xk ⇒ Jk ·dN,k =− fk (1)

fk = f (xk)

Assume f (x) 2x differentiable, |Jk| 6= 0, ∀xk, x0 close to solution (Kantarovich, 1937).
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2.1.1. Convergence characteristics

• local quadratic convergence:
‖xx+1− x∗‖
‖xk− x∗‖2 ≤ K

• global convergence:

. (1) can fail, need to be extended as optimization problem:

f (x) = 0 → minx φ(x) = f T(x) f (x)
f(x)

0
xx*

φ(x)

0
xx*

Try to enforce descent property for φ(x):

φ(xk+1)≤ φ(xk)

Directional derivative:
∇φ

T(xk) ·dN.k =−2φ(xk)≤ 0

í descent direction guaranteed.
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Use line-search procedure:

xk+1 = xk +αdN,k, α ∈ R.

• Armijo (1966):
φ(xk +αdk)≤ φ(xk)+δ (∇φ

T(xk) ·dk)α

• Also non-monotonic line searches (Grippo et al., 1986).

Derivatives Jk can be difficult and expensive to obtain, especially for large problems:

• consider sparsity of Jacobian matrix.

• approximate by finite-differences:

∂ fi

∂x j
'

f (· · · ,x j + ε j, · · ·)− f (· · · ,x j, · · ·)
ε j

. n+1 function evaluations, ε∗ ∼
√

Ea.
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2.1.2. Quasi-Newton methods

Similar to (1):
Bk (xk− xk−1)︸ ︷︷ ︸

sk

= ( fk− fk−1)︸ ︷︷ ︸
yk

(2)

For n > 1, (2) not uniquely defined. Popular choice is Broyden’s method:

min
Bk

‖Bk−Bk−1‖F

s.t. Bksk = yk

Solution is recursive update (rank-1):

Bk = Bk−1−
(yk−Bk−1sksT

k )
sT

k sk

Also possible inverse, factored updates.

Convergence is now just superlinear (local property).
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2.1.3. Trust-region approaches

Instead of line-search, constrain size of allowed steps:

min
dk

φ(xk)+∇φ
T(xk) · xk +

1
2

dT
k H(xk)dk (3)

s.t. ‖dk‖2 ≤ δc

For δc ∈ [0,+∞[, direction is combination of steepest descent and Newton directions. Therefore
possible:

• direct (approximate) solution of (3).

• empirical solution (Levenberg-Marquardt):

(Hk +λ I)dk =−∇φ(xk)
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• double-dogleg strategy:

(Dennis and Schabel, 1983)
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2.1.4. Homotopy (continuation) methods

Instead of tackling f (x) = 0, solve a continuous of subproblems, e.g.,

h(x,λ ) = f (x)− (1−λ ) f (x0)

λ = 0 ⇒ x∗ = x0, λ = 1 ⇒ h(x,1) = f (x).

Also possible to use dynamic form of models:

f (x) = 0 →


dx
dt

= f (x)

x(0) = x0

Using, e.g., Euler’s method:

xk+1− xk

∆t
= f (xk) ⇒ xk+1 = xk +∆t f (xk).

Hence, effect of nonlinearities attenuated when ∆t → 0.

• Can also be used to find multiple solutions.
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2.2. Practicalities

For more difficult cases, reformulation might be convenient:

f (x) = 0 ⇔
min
x,ε

‖ε‖

s.t. f (x) = ε

This feasible path approach can also be used to handle constraints. For a problem of the form

f (x) = 0
l ≤ x≤ u

the direct application of variations of Newton’s method or trust region can lead to failures in the
model equations. Instead of (1), consider

min
dk,ε

‖ε‖

s.t. f (xk)+ Jk ·dk = ε

l ≤ dk + xk ≤ u
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• Combine with a line-search strategy.

• Requires the solution of an LP at each iteration (expensive).

• Directions generated are always feasible.

• When possible, ε = 0 ⇒ basic Newton direction.

• Possible to use l1, l2, or l∞ norms. Distinct work involved, convergence properties. In
practice, search directions generated are very similar.

Preferred l1 norm. Behavior similar to mixed complementarity problems (MCP).

• Extremely useful to avoid multiple solutions, e.g., without physical meaning.
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Example: Ethanol production with biomass immobilization

Model equations for particles:

1
r2

∂

∂ r

(
r2∂Cp

∂ r

)
+ψ(Ca,Cp) = 0

1
r2

∂

∂ r

(
r2∂Ca

∂ r

)
−ψ(Ca,Cp) = 0

r = 0 ⇒ ∂Ca

∂ r
=

∂Ca

∂ r
= 0

r = 1 ⇒ ∂Ca

∂ r
= Bia(1−Ca);

∂Ca

∂ r
= Bip(1−Cp)
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Solution profiles:
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• Finite differences, 2nd order centered, 40 points.

• Many solutions without physical meaning!
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2.3. Application: Process Flowsheeting

(Turton et al., 1998)

• Very large problems (104 – 105 variables).

• Highly sparse.
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Typical sparsity diagram:
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• Sequential-modular:

. Follow order of material processing.

. Need to identify tear streams. Can be used with simple numerical methods (e.g., suc-
cessive substitutions).

. Little flexibility for process specifications.

• Simultaneous solution:

. Identify subsets of equations that require simultaneous solution (strongly connected in
process digraph).

. Block partition, at equation level. Derivatives only required for diagonal blocks.

. Very fast, with good starting values.

• Based on split-fractions:

. 2-step successive substitutions. Very robust!

• Require the aid of special simulators:

. ASPEN <http://www.aspentech.com/>.

. gPROMS <http://www.psenterprise.com/>

. ASCEND <http://www.cs.cmu.edu/~ascend/>
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3. Nonlinear optimization

min
x

φ(x)

s.t. h(x) = 0 (4)
g(x)≤ 0
x ∈ Rn

Important problem characteristics:

• Linear / nonlinear:

Objective Constraints

LP L L
QP Q L

NLP NL NL
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• Convexity:

. Functions:

φ [λx1 +(1−λ )x2]≤

≤ λφ(x1)+(1−λ )φ(x2), λ ∈ [0,1].

φ(x)

x

x1 x2

λ

. Domains:

z = λx1 +(1−λ )x2, λ ∈ [0,1].

φ(x)

x

x1 x2

λ

D

If φ(x) is convex, h(x) linear, g(x) convex, a local solution of (4) is
also a global solution.
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Implications for process design:

Superstructure for 2 CS + 1 HS:

Need to optimize separately each alternative:
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Example: Reactor network design (Ryoo and Sahinidis, 1995)

A->B->C

A

A->B->C

CA1, CB1

CA2, CB2

Design system that maximizes CB at output, assuming isothermal operation:

min
Ci,Vi

−CB2

s.t. CA1 + k1CA1V1 = 1
CA2−CA1 + k1k2CA2V2 = 0
CB1 +CA1 + k3CB1V1 = 1
CB2−CB1 +CA2−CA1 + k3k4CB2V2 = 0

V 0.5
1 +V 0.5

2 ≤ 4
0≤Ci ≤ 1
0≤Vi ≤ 16
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• Problem has 3 local solutions, with close objective values.

• Global solution:

CA1 = 0.772 CB1 = 0.204 V1 = 3.04
CA2 = 0.517 CB2 = 0.388 V2 = 5.10
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3.1. Optimality conditions

L (x,λ ,µ) = φ(x)+λ
Th(x)+ µ

Tg(x)

∇xL = 0 ⇒ ∇φ(x∗)+∇h(x∗) ·λ +∇g(x∗) ·µ = 0 (5)

∇λL = 0 ⇒ h(x) = 0

complementarity ⇒
µigi(x∗) = 0
µi ≥ 0
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(5) can be interpreted as a force balance for equilibrium:

x 2

x 1

h(x)=0

-∇f(x*)

-∇h(x*)

g (x)≤02

g (x)≤01

-∇g (x*)1

x*
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3.2. Successive Quadratic Programming (SQP)

K.T. conditions of (5) are system of NL equations ⇒ iterative solution. Consider:

min
x

φ(x)

s.t. c(x) = 0
⇒ L (x,λ ) = φ(x)+λ

Tc(x)

K.T. conditions:

∇φ(x)+∇c(x)λ = 0
c(x) = 0

First order expansion around (xk,λk):[
∇φ(xk)+∇c(xk)λk

c(xk)

]
+

[
∇2φ(xk)+∇2c(xk)λk ∇c(xk)

∇cT(xk) 0

]
·
[

∆x
∆λ

]
= 0
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These are equivalent to the K.T. conditions of

min
∆xk

φ(xk)+∇φ
T(xk)∆xk +

1
2

∆xT
k
[
∇

2
φ(xk)+∇

2c(xk)λk
]

∆xk

s.t. c(xk)+∇c(xk)T
∆x = 0

• QP solution at each iteration for search direction.

• Need 2nd order derivatives for both objective and constraints.

• Can also use quasi-Newton approximation:

Bk = Bk−1−
Bk−1sksT

k Bk−1

sT
k Bk−1xk

+
ykyT

k

yT
k sk

BFGS (rank-2 update)

sk = xk+1− xk

yk = ∇L (xk+1,λk+1)−∇L (xk,λk)
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3.3. Interior-point methods

Complementarity conditions of K.T. equations can be difficult to solve (combinatorial, ill-conditioned).

Barrier methods

min
x

φ(xk)−µ ∑
i

lnsi

s.t. h(xk) = 0
g(xk)+ s = 0

Solve sequence of problems, where µ → 0 (homotopy parameter).

active set
IP

Tradeoff: more iterations (several µ) vs. more expensive QPs.
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3.4. Reduced gradient methods (GRG)

Similar to simplex methods for LP.

• Decide which constraints are active / inactive.

• Partition variables as dependent / independent.

• Solve unconstrained problem in the space of independent variables.

Consider:
min

z
φ(x)

s.t. h(z) = 0
l ≤ z≤ u

+ slack variables.

Partition variables as:

z =
[

zI
zD

]
⇒ h(zI,zD) = 0
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Constrained derivative:

dφ

dzI
=

∂φ

∂ zI
+

dzD

dzI

∂φ

∂ zD

dzD

dzI
= [∇zIh] · [∇zDh]−1 implicit form

• Always takes feasible steps.

• Very robust implementations available (e.g., CONOPT3).

. practical details (initialization, scaling, sparsity).

. combined with other solution techniques (Newton steps, SQP).
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Example: Kinetic parameter estimation (CSTR)

A B
k

min
θ ,z

r

∑
j=1

m

∑
i=1

(zi j− zi j,mod)2

σ2
i

s.t.
(z1− z2)

τ
− kz2 = 0

− z3

τ
+ kz2 = 0

z4− z5

τ
+

(−∆H)
ρCp

kz2 = 0

k = θ1 exp
(
−θ2

z5

)

• For batch data, need optimization of a DAE model.

• Can easily be solved within GAMS or AMPL — local solutions.
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4. Discrete optimization

min
x,y

φ(x,y)

s.t. h(x,y) = 0
g(x,y)≤ 0
x ∈ Rn, y ∈ Nm

Possible integer variables (y∈N) or binary variables (y∈{0,1}). Can assume only binary present.
Some algorithms take advantage of both, others require just binary (e.g., like simple bounds).

Problem classes:

Type Objective Constraints Variables

IP L L I
LP L L R

MILP L L I, R
NLP NL NL R

MINLP NL NL I, R
NIP NL NL I
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Process example: Design of a chemical complex (Sahinidis and Grossmann, 1991)

Decisions:

• C produced, and how much?

• Which alternatives II or III (exclusive)?

• How to obtain B?
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Process data:

Conversion Fixed Variable
Process (%) cost cost

I 90 1000 250
II 82 1500 400
III 95 2000 550

Species Prices Constraints

A 500 ≤ 16
B 950
C 1800 ≤ 10

Solution:

yi =
{

1, process i selected.
0, if not.

Exclusivity of II and III:
y2 + y3 ≤ 1

Mass balances:

B1 +PB = B2 +B3 B1 = 0.9PA

C2 +C3 = SC C2 = 0.82B2

C3 = 0.95B3
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Constraints:

PA ≤ 16y1 B3 ≤ (10/0.95)y3

B2 ≤ (10/0.82)y2 SC ≤ 10

Objective:

φ (Profit) =−(1000y1 +250PA+ → investment
1500y2 +400B2+
2000y3 +550B3)

−500PA−950PB → purchases
+1800SC → sales

í MILP problem.
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Optimal solution:

φ = 459.3 B2 = 12.195
PA = 13.55 SC = 10

Solution much more complex if formulation was MINLP.
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4.1. Solution methods for MILP

• Real relaxation (LP) + solution rounding.

. Dangerous with binary variables.

• Explicit enumeration: Build complete decision tree:

. Only possible with very small problems (brute force).

For m discrete variables, with ni distinct values, need to solve
m

∏
i=1

ni continuous optimization problems, in (nv−m) variables.

. Several strategies to visit nodes (depth-first, breadth-first, specific A.I. heuristics).
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• Method of cutting planes:

. Start with LP relaxation.

. If not integer solution already, add constraints to previous problems, solve new LP.

. Incremental characterization of convex hull of problem.

• Boolean methods (only binary variables):

. Exploit similarities with propositional logic and theorem proving (e.g., PROLOG).

• Branch & Bound: (implicit enumeration)

. Create decision tree (branch). Use solution bounds to reduce search space (bound).

Reference formulation:

min
x,y

aTy+ cTx

s.t. By+Ax≤ b
x≥ 0, y ∈ {0,1}

Lower bound: solution of relaxed LP.
Upper bound: best integer solution so far.
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Simple example:
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Example: Process heat integration (targeting)

Specify ∆Tmin

↓
Minimum utility cost (transshipment LP)

↓
Minimum number of matches (transshipment MILP)

↓
Minimum investment cost (NLP)
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(Linnhoff et al., 1982)
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4.2. Solution of MINLPs

min
x,y

(max) φ(x)+ cTy

s.t. g(x)+Hy(•)b (•) = {≤,=,≥}

l ≤ x≤ u, y ∈ {0,1}

NOTE: If f (y) nonlinear, can replace:

f (y)→ f (y′),
y = y′

y′ ∈ R
0≤ y′ ≤ 1

Algorithms for MINLPs (Grossmann, 2001):

• Generalized Benders decomposition.

• Outer approximation (OA).

• Extended Cutting Planes.

• Simple Branch & Bound (SBB) (Bussieck and Drud, 2001).
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4.3. Modeling with discrete variables

Simple cases:

• Multiple choice:

. Select only 1 item: ∑
i

yi = 1

. Select at most 1 item: ∑
i

yi ≤ 1

• If y = 0, associated x or f (x) must be 0:

f (x)−My≤ 0, f (x) ∈ [0,M]

• Implications (K ⇒ J):

yk− y j ≤ 0
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Systematic incorporation of logical information (Ramesh and Grossmann, 1991)

Simple logic relations:

Combine with reduction to normal conjunctive form using logic equivalences, DeMorgan laws,
and distributive properties.

Example: If product A or B (or both) produced, at least one of the products C,D, or E must also
be manufactured.
Let Pi ≡ product i manufactured. Associate yi ∈ {0,1} with Pi. Equivalent proposition is

(PA∨PB)⇒ (PC∨PD∨PE)
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Simplification:

(PA∨PB)⇒ (PC∨PD∨PE) → (PA∨PB)∨ (PC∨PD∨PE) →

→ (P̄A∧ P̄B)∨ (PC∨PD∨PE) →

→ [P̄A∨ (PC∨PD∨PE)]∧ [P̄B∨ (PC∨PD∨PE)]

Using the previous table, originates:

(1− yA)+ yC + yD + yE ≥ 1
(1− yB)+ yC + yD + yE ≥ 1
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Other uses:

• This approach can also be used to model heuristics:

A⇒ B →
yA− yB ≤ 0 (logic)
yA− yB ≤ s (heuristic)

Penalty can be associated with constraint violations.

• Discrete variables also useful to approximate non-convex regions (Williams, 1993) or func-
tions. Typical cost functions in ChemE:

C = avb, b∼ 2/3 ⇒ nonconvex
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Using discrete variables, the cost functions can be approximated as:

C =
{

0, v = 0
C f +Cvv, v > 0

with:

y = 0 ⇒ v = 0 →
{

v−Mvy≤ 0
v≥ 0

C

0
v

→

C

0
v

Can also be generalized to approximation using several linear segments, or discontinuous
changes in costs.
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Examples:

• Distillation design.

• Flowsheet optimization with detailed models (fixed structure).

• Process design.

• Trim loss minimization.
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Distillation design:
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5. Optimization of systems described by differential equa-
tions

In general, more detailed and accurate models in ChemE involve differential equations (e.g.,
PDE) ⇒ need to solve and optimize.

5.1. Problem types

• Optimal control:

min
u(t)

φ(z(tF))

s.t. ż = f (z,u,θ), z(0) = z0

h(z,u,θ) = 0
g(z,u,θ)≤ 0

. u(t) ∈ Rn infinite dimensional → calculus of variations.

. E.g., process control, discontinuous processes.
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• State or parameter estimation:

min
θ

∑
i

[yobs(ti)− ymod(ti,θ)]2

s.t. process model
constraints

. Now finite no. of DOF. Hence can be solved as conventional NLP, if DAE model treated
as an entire I/O block (black-box approach).

• Design problems:

min
v

(cost, -performance)

s.t. process model
constraints

. E.g., optimize catalyst, nonhomogeneous reactor, etc.

Can involve ODEs or PDEs; here just ODEs.
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5.2. Strategies for optimization of DAE models

• Direct solution of optimality conditions (Euler-Lagrange) → variational methods.

• Analogy with solution methods; these usually involve a discretization of the ODEs:

. Partial discretization: only input profile u(t) parametrized. Since the derivatives kept,
the optimization and solution are done sequentially:

DAEs Optim.

u(t), θ

φ, g, h

. Full discretization: input u(t) and state z(t) profiles discretized → scalar (large-scale)
NLP, for simultaneous solution and optimization.

DAEs + Optim.

• Also possible dynamic programming, e.g. after partial discretization.
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5.2.1. Optimality conditions for ODE systems

Using Mayer form:

min
u(t)

J(z(tf))

s.a ż = f (z,u,θ), z(0) = z0

h(z,u,θ) = 0
g(z,u,θ)≤ 0
hf(z) = 0
gf(z)≤ 0

L = J(zf, tf)+ µ
T
f gf +ν

T
f hf +

∫ tf

0

(
λ (t)T ( f (z,u,θ)− ż)+ µ

T(t)g(z,u,θ)+ν
T(t)h(z,u,θ)

)
dt
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Necessary conditions:

∂L

∂ z(t)
:

∂ f
∂ z

λ + λ̇ (t)+
∂g
∂ z

µ +
∂h
∂ z

ν = 0 (adjoint equations)

∂L

∂u(t)
:

∂ f
∂u

λ +
∂g
∂u

µ +
∂h
∂u

ν = 0

∂L

∂ zf
:

∂J
∂ zf

+
∂gf

∂ zf
µf +

∂hf

∂ zf
νf−λ (tf) = 0 (transversality)

Dificulties:

• nonlinear TPBVP (z(t), λ (t) ∈ Rn).

• Initialization, path constraints.

General algorithms (e.g. CVI) difficult to implement. However analytical solutions for special
cases. (e.g., linear — Kalman).
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5.2.2. Sequential solution and optimization

DAE model treated as an indivisible block (black box), solved by a specific routine.

• IVP.

• BVP, can require the use of shooting or multiple shooting.

Other characteristics:

• Optimization iterates are always feasible solutions of the DAE system (advantageous for
some applications).

• Size of NLP generated are also smaller than simultaneous approach.

• Sequential method is only reliable when model equations contain only stable modes.

• Bounds on state variables difficult to specify (hidden). However, can penalize several
measures of constraint violation in the objective.
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Gradient information can be computed by:

• Perturbation:
∂φ(tF)

∂θ
=

φ(tF ,θ +∆θ)−φ(tF ,θ)
∆θ

. Simple to use.

. Choose ∆θ , considering accuracy of integration.

. np +1 integrations required.
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• Sensitivities: Define

s(t)=
∂ z(t)
∂θ

Differentiate model equations:
∂

∂θ
[ż = f (z,θ)]

∂

∂θ
[z(0) = z0]

⇒


ṡ =

∂ f T

∂ z
s+

∂ f
∂θ

s(0) =
∂ z0

∂θ

. Linear system, also IVP.

. Jacobian already available, in implicit methods.

Then
∂φ(z(tF))

∂θ
=

∂φ(z)
∂ z

∣∣∣∣
zF

· s(tF)
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• Adjoint equations (Sargent and Sulivan, 1979): Similarly to previous analysis, define

φ(tF) =
∫ tF

0
λ

T(ż− f (z,θ))dt

Integrate by parts, and set variations to 0:

λ̇ =−∂ f
∂ z

λ adjoint equations

λ (tF) =
∂φ

∂ z(tF)
final condition

∂φ(tF)
∂θ

=
∫ tF

0
λ

T ∂ f
∂θ

dt +λ (0)
∂ z0

∂θ

. Now BVP, solution can be decoupled, storing trajectory and Jacobian.
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5.2.3. Simultaneous solution and optimization

DAE model converted to AE model, by parametrization of the input and state profiles:

• Solve model just once, to optimality. If algorithms fails, . . . (infeasible path approach).

• Originates large-scale NLPs.

• Can handle more easily path constraints.

• Based on a method for solution of the DAE system:

Relaxation methods (finite differences):

ż = f (t,z)
g(z(a),z(b)) = 0
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Classical 2nd order schemes:

• Trapezoidal:

zi+1− zi

hi
=

1
2

( f (ti+1,zi+1)+ f (ti,zi)) , i = 1, . . . ,N

g(z1,zN+1) = 0

• Midpoint:

zi+1− zi

hi
= f

(
ti+1

2
,
1
2
(zi + zi+1)

)
, i = 1, . . . ,N

• Sparse system of NL equations.

• Higher order schemes can be used, e.g., implicit Runge-Kutta (Ascher et al., 1995).

• Adaptive grids can also be used.
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Method of weighted residuals:

For ż = f (t,u,z,θ), z(0) = z0

approximate solution:

z(t)' zN(t) = z0(t)+∑
i

aiφi(t)

Residuals of approximation:
R(a, t) = zN(t)− f (t,u,zN,θ)

Solve integral error equations:

E(wi,R) =
∫ tF

0
wi(t)R(a, t)dt = 0, i = 1, . . . ,N

For particular choices of wi(t), methods of least squares, Galerkin, or collocation result.

A common choice is orthogonal collocation at roots of Legendre polynomial, using Lagrange
interpolation formulas:
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• Lagrange interpolation polynomials:

z(t) =
nk

∑
k=0

zklk(t) u(t) =
nk

∑
k=0

uklk(t)

l j(t) =
nk

∏
k=0
k 6= j

(t− tk)
(t j− tk)

• Orthogonal collocation at ti:

R(a, ti) = ∑
i

zil′j(ti)− f (zi,ui,θ) = 0

• ti chosen as roots of Legendre polynomial of degree n, shifted to t ∈ [0, tF ].
This can be shown to be equivalent to a Runge-Kutta method of O(2nc).
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• Can also be extended to collocation of finite elements:

z(t)

tα1 α2 α3

. Better control of approximation error:

‖e(αi+1)‖= O(|∆αi‖2nc)

Can be used to control the element length, to equidistribute the solution error.

. Include continuity of solution and derivatives across elements.
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5.3. Process applications

5.3.1. Nonlinear model-predictive control

t

Output, y

Set-point, sp

Input, u

Control horizon

Output horizon

y

tk tk+1 tk+2 ... tk+m ... tk+p

y
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• Requires a process model.

• Based on online optimization.

• feedback / feedforward structure.

• can also be adapted to observation, parameter estimation.

Examples:

• QDMC — linear convolution model, quadratic objective, QP (Garcia and Morshedi, 1986).

• Newton-control — nonlinear model, quadratic objective, NLP (Oliveira and Biegler, 1995).
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Process

Control

Optimization

Long term:
   Market fluctuations

Disturbance type:

Mean term:
   
   Price fluctuations

Catalyst deactivation
Raw materials

Short term:
  Process variations

Disturbances Outputs

MeasuresManipulations

sSet-point
Constraints Model parameters

Production volumes
Choice of raw materials Cost coeficients

Scheduling and planning

Hierarchical process supervision
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Problem formulation

min
u(t)∈Hik

J2(u,y) =
∫ tk+toh

tk
(y− ysp)TQy(t)(y− ysp)+(u−ur)TQu(t)(u−ur)dt

s.t. ẋ = fp(x,u,d;θ)
y = gp(x;θ)

ul ≤ u≤ uu

xl ≤ x≤ xu

yl ≤ y≤ yu

• ur is input reference trajectory.

• If tih ≤ toh, assume inputs remain constant.

Optimization and Control of Chemical Processes — CIM Workshop, July 2003 76



Flash and CSTR example:
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Reactor equations:

dV
dt

= F1 +F5−F2

dC2

dt
=

F1C1 +F5C4− (F1 +F5)C2

V
+ r(T2,C2)

dT2

dt
=

F1T1 +F5T3− (F1 +F5)T2

V
+

(−∆H)
ρcp

r(T2,C2)−
UA

ρcpV
(T2−Ts)

Flash equations:

C3 = Ke1(T3)C4

(1−C3) = Ke2(T3)(1−C4)
F2 = F3 +F4

F2C2 = F3C3 +F4C4
Mixed equations:

r(T2,C2) =−Kr1(T2)C2 +Kr2(T2)(1−C2)
Kr1 = A1 exp(−Ea1/T2)
Kr2 = A2 exp(−Ea2/T2)

Ke1(T3) = a110−b1/T3

Ke2(T3) = a210−b2/T3

F2 = kvV
C3 +C4 = 1

F5 = αF4
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Input multiplicities:

3.8 4 4.2 4.4 4.6

T3

-0.05

0

0.05

0.1

0.15

0.2

0.25

f2

3.94 3.96 3.98 4 4.02

T3

-0.0002

-0.00015

-0.0001

-0.00005

0

0.00005

0.0001

f2

u =

{ [
4.500 2.485×10−2 4.000

]T[
6.861 3.179×10−2 3.947

]T ⇒ x =
[
1 0.4899 4.352

]T

• 6= manipulations have significant economic impact.

• linear control can originate sudden instability.
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Steady state sensitivities:
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Schedule change in recycle ratio:
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5.3.2. Optimal design of catalyst pellets

Catalytic reactions very common in ChemE:

G
-L

 in
te

rfa
ce

L-
S 

in
te

rfa
ce

Gas phase Liquid phase Solid phase

Ci,G

Ci,L

Ci,S

Catalyst

Active materials generally expensive. Where to concentrate activity?

Non-uniform distribution can lead to improved performance (e.g., efficiency, selectivity and
duration).
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• Significant no. of cases studied. Sometimes solution is (e.g., Chemburkar et al. (1987)):

a(r) = δ (r− r∗)

• Need to consider detailed information, e.g., catalyst poisoning or coking.

Here consider optimal activity profiles, for pellets with single arbitrary reaction, without cata-
lyst deactivation:

Objective: Maximize effectiveness factor, using simultaneous solution and optimization.
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Mathematical model:

max
a(r)

(n+1)
∫ 1

0
ψ(c,θ)a(x)xn dx

s.t.
1
xn

d
dx

(
xndc

dx

)
= (n+1)φ 2a(x)ψ(c,θ)

1
xn

d
dx

(
xndθ

dx

)
=−(n+1)βφ

2a(x)ψ(c,θ)∫ 1

0
a(x)xn dx =

1
(n+1)

x = 0 ⇒ dc
dx

=
dθ

dx
= 0

x = 1 ⇒ dc
dx

= Bim(1− c);
dθ

dx
= Bit(1−θ)
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Optimization results:
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• Orthogonal collocation with nk = 3, using 20 finite elements.

• Physical data:

• Model results:

• Multiple solutions possible!
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• Empirical strategy for element length adaptation:

If
∣∣∣∣maxi Rnci

mini Rnci

∣∣∣∣≥ ξ then ∆αi,new =
∆αi,old

‖Rnci‖ε

. η ∼ 0.2, 5 or 6 NLP iterations required.

. Only 2–3 elements active at solution.

• Example code available at
<http://www.eq.uc.pt/~nuno/cim2003/fopslab6.gms>.
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Conclusions
• Representations and models are the natural tools in PSE.

• Systematic methods are required to explore alternatives that meet constraints and optimize
objective. Their use depend significantly on key model characteristics.

• PSE has both practical and theoretical implications.

• Current research areas also at micro-scale (molecular simulation, CFD, product design) and
macro-scale (logistics, production planning), and integration of all levels.
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