
Leia atentamente todas as questões. Faça acompanhar a resolução dos problemas com os comentários e justificações que se lhe afigurem pertinentes. Deixe bem expressas as unidades que usar.

1ª **QUESTÃO** (2+2+3 val.)

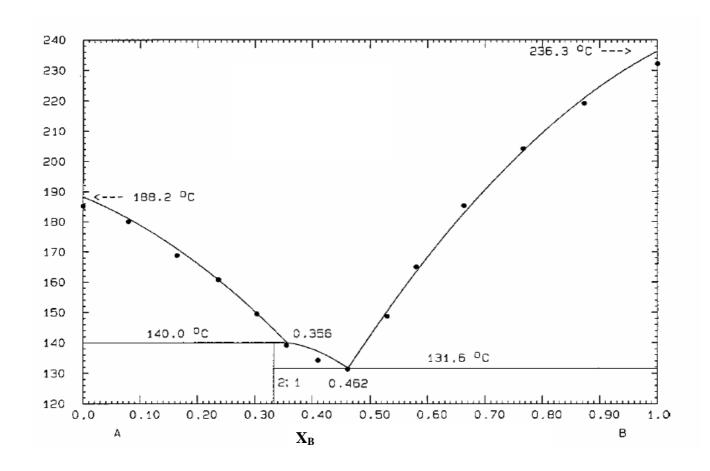
Na figura a seguir apresenta-se o diagrama de fases do sistema ácido aminobenzóico(A)+cafeína(B) à pressão atmosférica.

- a) Indicar a fórmula do composto A_xB_y existente às temperaturas inferiores a 140 °C.
- b) Identificar os pontos e linhas notáveis do diagrama e identificar as fases presentes.
- c) Descrever as fases presentes e a sua composição no arrefecimento de uma mistura 60 % molar em cafeína desde 240°C até 120 °C.

2ª QUESTÃO (3+3+4+3 val.)

A função de Gibbs de excesso molar, G^E, das misturas líquidas de CO₂(1)+C₂H₆(2) a -50 °C pode ser descrita pela equação

$$\frac{G^{E}}{RT} = 0.96 x_{1} x_{2}$$


onde x₁ e x₂ designam respectivamente, as fracções molares do dióxido de carbono e do etano. À temperatura anteriormente referida estão disponíveis os seguintes dados:

$B_{11}/(cm^3.mol^{-1})$	$B_{22}/(cm^3.mol^{-1})$	$P_1*/(kPa)$	P ₂ */(kPa)
-240	-331	680	551

- a) Estabeleçer as equações do coeficiente de actividade dos dois componentes nas misturas líquidas em função das fracções molares x₁ e x₂.
- b) Determinar os coeficientes de fugacidade do CO_2 e do C_2H_6 como líquidos puros saturados (φ_1^* e φ_2^*);
- c) As misturas de CO₂ e C₂H₆ a -50 °C possuem um azeótropo de pressão máxima. Determine a composição e a pressão de equilíbrio desse azéotropo **considerando que a fase gasosa é uma mistura gasosa perfeita.**
- d) Calcule a pressão e a composição do vapor em equilíbrio com o líquido de composição x_1 =0.7 sabendo que no equilíbrio os coeficientes de fugacidade na fase gasosa são ϕ_1 = 0.9015 e ϕ_2 =0.8677. Como explica que a pressão obtida em d) seja superior à obtida na alínea c)?

NOME:	
-------	--

$\'{A}cido\ aminobenz\'oico(A) + Cafe\'ina(B)$

